
Research Article Vol. 29, No. 9 / 26 April 2021 / Optics Express 13153

Optical and electrical programmable computing
energy use comparison

CHRIS COLE*

II-VI Incorporated, 1389 Moffett Park Drive, Sunnyvale, CA 94089, USA
*chris.cole@ii-vi.com

Abstract: Optical computing has been proposed as a replacement for electrical computing to
reduce energy use of math intensive programmable applications like machine learning. Objective
energy use comparison requires that data transfer is separated from computing and made constant,
with only computing variable. Three operations compared in this manner are multiplication,
addition and inner product. For each, it is found that energy use is dominated by data transfer,
and that computing energy use is a small fraction of the total. Switching to optical from electrical
programmable computing does not reduce energy use.
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1. Introduction

Electronic digital computers have been in use for over half a century [1]. They are ubiquitous
because advances in silicon electronics steeply increase computing power while decreasing energy
use. Together with light transmission over fiber optic cable, which uses significantly less energy
than electrical transmission, this has enabled exponential growth in cloud computing. However,
math intensive applications like machine learning are increasing energy use at a faster rate than
can be decreased by advances in silicon electronics [2]. This has motivated a search for alternate
means to lower energy use. One proposed approach is switching to analog from digital computing,
with potential to reduce energy use at low bit precision [3,4]. More ambitious proposed approach
is switching to optical from electrical computing, with promise of low energy use like in optical
data transmission. This has attracted substantial research and development funding and generated
enthusiastic publicity [5,6]. What has been missing is objective apples-to-apples comparison of
optical and electrical programmable computing energy use. It is critical that such analysis is
broadly discussed in a timely manner because investment in optical programable computing is
rising. Energy use comparison of computing systems with limited or no programmability is not
made in this paper, and the scope and value of their supported applications is not evaluated.

2. Computing models

Figure 1 shows a data transfer model of a computer optimized for math intensive operations. All
elements are electrical. Computing is separated into two types, A and B. Type A is optimized for
math operations like addition, multiplication and inner product [7]. Many such basic operations
are executed to process a complex computing task. An example task is addition of values in
a column. A more complex task is the inner product, which is the multiplication of adjacent
values in two columns, followed by addition of all the resulting products. In machine learning
applications inner product is executed multiple times to process the highest energy use computing
task, which is matrix vector product.

Computing architectures used for energy comparison in this paper are formally Turing-
complete, or informally generally programmable to process complex tasks like matrix vector
product with changing coefficients, data and tensor size. Many optical computing publications
report approaches with limited if any programmability. This greatly simplifies implementation, but
also narrows the supported applications. All commercial computing systems are programmable,
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Fig. 1. Data transfer model of a computer optimized for math intensive operations. All
elements are electrical. Input Data path flows left to right.

and the trend is towards greater complexity and flexibility in computing intensive applications
like training of neural networks.

Figure 1 Example shows type A Computing multiplying row of N values y[n] by single cell
value x1 stored in register REG, resulting in row of N values z[n]. Figure 2 shows the data
sequencing.

Fig. 2. Data sequencing for computing z[n] = y[n] x1.

Type B is all other computing like logical comparisons, decision making, and flow control.
Computers require data and instructions to perform tasks, which the Fig. 1 computer model
supports. Since energy use associated with instructions is negligible, they are not used in energy
use comparisons. Despite math intensive nature of machine learning tasks, the total energy use is
dominated by data transfer from and to Data Storage [8].

2.1. Electrical

Figure 3 shows a model of the same computer as in Fig. 1, except data is transferred by light
instead of electricity [9]. Fiber optic cable, or other type of optical waveguide, is used for
transmission. Data Storage and Computing remain electrical. Figure 3 Example shows details
of the transmitter and receiver. Each value y[n] modulates wavelength optical power P (Pλ). A
photo detector (PD), biased by voltage V, converts the optical power to signal current, which is
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converted to electrical data y[n]′ by the trans-impedance amplifier (TIA) and analog to digital
converter (ADC). Black and blue signify electrical and optical elements, respectively.

Fig. 3. Data transfer model of a computer using light for transmission. Black and blue
signify electrical and optical elements, respectively. Input Data path flows left to right.

2.2. Optical

Figure 4 shows type A Computing performed optically, reusing Input Data path light. Type B
Computing is difficult to perform optically and stays electrical. Figure 4 Example 1 shows an
optical modulator, like in an optical transmitter, used for multiplication. Row of N values y[n]
are multiplied by single cell value x1, same as in Fig. 1 Example. Figure 4 Example 2 shows a
WDM MUX (wavelength division multiplexer) used for addition. Each value x[m] modulates
wavelength m optical power P (Pλm). Column of M values x[m] is optically summed together by
the WDM MUX combining all M wavelengths, resulting in single cell value z1.

Optical computing uses passive or active elements, for example lenses or optical modulators,
respectively, or a combination of the two. Lenses rely entirely on the energy of the source, do not
store data, are not programmable, and perform spatial filtering, i.e., two-dimensional convolution.

The usefulness of lenses has been recognized for over four millennia [10]. A hypothetical
electronic lens projects 24-bit color, 120 frame per second, 512× 512 image. This is ∼25 trillion
8-bit multiply-add operations per second, and is the same math as used in machine learning.
This level of processing at zero energy use is very compelling and the reason such approaches
have so much research interest. Unfortunately, the lack of programmability restricts applicability.
Neuromorphic computing is an example of cascaded optical computing with potential for good
energy efficiency [11–14]. Like lenses, it’s limited programmability restricts its use, for example
to image pre-processing. As stated previously, this type of optical computing is not analyzed nor
compared in this paper.

For decades, the holy grail in optical computing has been all-optical random-access memory
(RAM) [15], to enable all-optical programmable computers. Except for niche applications
in which low-density data storage is useful, for example FFT processing [16], no practical
high-density all-optical RAM exists. All practical digital computers use electrical RAM, which
requires conversion between optical and electrical, if light is used for data transfer and/or
computing.
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Fig. 4. Data transfer model of a computer using shared light for transmission and optical
computing. Input Data path flows left to right.

2.3. Comparison methodology

Electrical computing energy use is well understood, but not relative to optical computing because
it is difficult to separate data transfer from computing energy use. This leads to the first major
problem in energy use comparisons. Optical computing proposals compare electrical data
transfer and computing like in Fig. 1 to optical data transfer and computing like in Fig. 4. Even
when energy use is dominated by data transfer, energy use advantages are attributed to optical
computing [17–21].

Apples-to-apples energy use comparison must use optical data transfer for both and compare
electrical computing as in Fig. 3 to optical computing as in Fig. 4. The implementation and
operation of Data Storage, type B Computing, and Output Data paths must be identical so that
their energy use is identical and does not affect energy use comparison. Only the Input Data paths
are different. Then the Energy Total Electrical type A Computing Input Data path (ETotal−EtAComp)

of Fig. 3 can be fairly compared to the Energy Total Optical type A Computing Input Data path
(ETotal−OtAComp) of Fig. 4, both processing the same task.

ETotal−OtAComp = ETX−OtAComp + ERX−OtAComp + EComp−OtAComp (1)

ETotal−EtAComp = ETX−EtAComp + ERX−EtAComp + EComp−EtAComp (2)

ETotal−EtAComp ? ETotal−OtAComp (3)

A characteristic of many optical computing implementations is inherent low precision, which
leads to the second major problem in energy use comparisons. Optical computing is proposed
for applications in which low precision maybe acceptable, for example certain neural networks.
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Incomplete implementations are used to demonstrate feasibility. They are then compared to
complete commercial systems implemented with Graphical Processing Units (GPUs) or Tensor
Processing Units (TPUs), which support high precision floating point and high precision integer
electrical computing [22–24].

Key requirement of apples-to-apples energy use comparison is having the same precision for
data transfer to and from optical and electrical computing. This means if externally examined as
black boxes, optical and electrical computing implementations cannot be differentiated. Precision
is quantified by the signal-to-noise ratio (SNR). Fair comparison must have equal input data SNRs
and equal output data SNRs. Three operations used in making this comparison are multiplication,
addition and inner product, outlined in Table 1.

Table 1. Optical and electrical programmable computing energy use comparison outline.

Section 2. Computing model 3. Multiplication 4. Addition 5. Inner product

Task all vector scalar product vector element sum matrix vector product

Equation all z[n] = y[n] x1 z1 =
M∑︁

m=1
x[m] z[n] = Y[n, m] x[m]

Electrical Fig. 3 ∈ 2.1 Fig. 5 ∈ 3.1 Fig. 7 ∈ 4.1 Fig. 9 ∈ 5.1

Optical Fig. 4 ∈ 2.2 Fig. 6 ∈ 3.2 Fig. 8 ∈ 4.2 Fig. 10 ∈ 5.2

3. Multiplication

N-element vector y[n] is shown electrically and optically multiplied by scalar x1 in Figs. 5 and 6,
respectively, resulting in N-element vector z[n].

z[n] = y[n] x1 (4)

Input K-bit data is read sequentially from Data Storage, multiplied to compute output data, and
written sequentially to Data Storage.

Fig. 5. Input Data path model with electrical multiplication of z[n] = y[n] x1.

3.1. Electrical

Figure 5 expands the Fig. 3 Input Data path. It shows one modulator single transmitter converting
electrical digital data to optical signal power by multiplying continuous wave optical power of
one wavelength by electrical signal representation of the data. Transmitter aM and other optical
path losses are not included.

Figure 5 shows a single receiver, comprised of one PD, TIA, and ADC. The PD converts
optical signal power to signal current iPD. The TIA and ADC convert the signal current to
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Fig. 6. Input Data path model with optical multiplication of z[n] = y[n] x1.

electrical digital data. The feedback resistor R is adjusted to map the TIA output into the full
ADC preamplifier input range (VADC−input−range).

R =
VADC−input−range

max(iPD)
(5)

Performance of high-speed CMOS TIAs and ADCs is listed in Tables 2 and 3, respectively.
The cited technology is advanced but practical and implementable today. Future technology
is not included. Exciting research, like novel PD waveguide geometry and material system
[25] and photonic crystal platform modulator and receiver [26], is critical to future energy use
breakthrough reductions. However, it is not considered. The criteria for including a technology
in energy use comparisons in this paper is credible demonstration for today’s designs.

Table 2. Energy of five high-speed CMOS TIAs, not including output buffers.

Bit Rate Symbol Rate Bandwidth CMOS node Noise Energy Reference

Gb/s GBaud GHz nm pA/
√

Hz fJ/bit

15 15 10 90 70 150 [27]

53 53 27 28 14 600 [28]

54 54 28 28 42 550 [29]

106 53 27 16 17 580 [30]

112 56 45 28 22 540 [31]

Table 3. Energy of five high-speed CMOS ADCs.

Output Rate CMOS node Effective bits Energy Reference

Bits GS/s nm ENOB fJ/bit

6 24 28 4.5 210 [32]

6 3.3 28 5.4 310 [33]

8 10 65 6.4 800 [34]

8 1 28 7.3 350 [35]

8 28 7 5.0 355 [36]

Figure 2 shows the data sequencing. During cycle 1 scalar x1 is transmitted, received and
stored in REG. During cycle 2 scalar x1 path through multiplier 2 settles. During cycles 3 to
N+2, N vector y[n] values are transmitted and electrically multiplied by scalar x1. Vector z[n]
values z[1], z[2], . . . z[N] are output on cycles 4, 5, . . . N+3, respectively.

Electrical multiplier with two K-bit inputs has a 2K-bit output product. For zero mean,
independent processes, multiplier 2 output SNR (SNRmult−output) is simply half the multiplier 2
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input SNR (SNRmult−input). SNR is a ratio of powers, or variances (var).

SNRmult−input =
var(x)

var(Nx)
=

var(y)
var(Ny)

(6)

SNRmult−output =
var((x + Nx)(y + Ny))

var(xNy + yNx + NxNy)

=
(SNRmult−input)

2

(2SNRmult−input + 1)

≈
SNRmult−input

2

(7)

Because the multiplier 2 output SNR is half the multiplier 2 input SNR, which is represented
by K-bit data, it is not necessary to use 2K-bits for multiplier 2 output. Using K-bits preserves
the multiplier 2 output SNR.

Performance of electrical 16-bit multipliers in 45 and 7nm CMOS process nodes is listed in
Table 4. The 7nm values are estimated from the 45nm values using 10x energy scaling factor [37].
Energy use of 8-bit multipliers is ideally quarter of these values. Energy use is much less than of
the TIAs and ADCs listed in Tables 2 and 3, respectively, and is negligible in calculating total
energy use of the Input Data path. This is the same as in electrical computing where electrical
data transfer dominates energy use [8].

ERX−EtAComp−Mult ≈ ERX−EtAComp−Mult + EComp−EtAComp−Mult (8)

As CMOS scales down in feature size, power drops for analog circuits like TIAs and ADCs
and digital circuits like multipliers. However, a serious challenge facing CMOS analog design is
that power decrease is plateauing with finer CMOS nodes. In contrast, power of CMOS digital
circuits is steadily decreasing. Over time, the energy use advantage of CMOS digital circuits will
continue to increase over analog circuits.

Table 4. CMOS 16-bit multiplier delay and energy use.

CMOS node nm Delay ps Energy/op (max) fJ Input bits/op Rate Gops/s Energy fJ/bit Reference

45 1440 2955 16 0.7 185 [38]

45 → 7 58 296 16 17.5 19 [37,38]

45 1010 3100 16 1 194 [39]

45 → 7 40 310 16 25 19 [37,39]

3.2. Optical

Figure 6 expands the Fig. 4 Input Data path. It shows two modulator single transmitter converting
electrical digital data to optical signal power by multiplying continuous wave optical power of
one wavelength by electrical signal representation of the data. Transmitter aM

2 and other optical
path losses are not included. For K=1, 0 and 1 binary levels are used, which implements digital
optical multiplication.

Figure 2 shows the data sequencing. During cycle 1 scalar x1 is stored in REG. During cycle
2 scalar x1 path settles through modulator 2. During cycles 3 to N+2, modulator 1 transmits
N vector y[n] values, which are multiplied by scalar x1 in modulator 2. Vector z[n] values
z[1], z[2], . . . z[N] are output on cycles 4, 5, . . . N+3, respectively. Modulator 2 operates at a
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much lower rate than modulator 1, and its energy use is negligible in comparison.

ETX−OtAComp−Mult ≈ ETX−OtAComp−Mult + EComp−OtAComp−Mult (9)

Figure 6 shows a single receiver, comprised of one PD, TIA and ADC. The PD converts optical
signal power to signal current iPD. The TIA and ADC convert the signal current to electrical
digital data. TIA output is adjusted to map into the full ADC preamplifier input range.

Equal Output Data SNRs in Figs. 5 and 6 requires equal TIA output SNRs (SNRout−TIA).

SNRout−TIA−Fig.6 = SNRout−TIA−Fig.5 (10)

Ideally, TIA noise is dominated by thermal noise of the feedback resistor R. The TIA resistors
in Figs. 5 and 6 have the same value which results in equal output SNR.

In Fig. 6, the PD signal current (iPD) is the input optical power times PD responsivity (rPD).

iPD = rPD P1 y[n] x1 (11)

The average (avg) of the PD signal current is the product of the averages of component terms.

avg(iPD) = rPD P1 avg(y[n]) avg(x1) (12)

The scalar x1 can have a value anywhere in the full range. However, the TIA must support the
maximum (max) value of x1, resulting in same TIA signal current as in Fig. 5.

max(iPD) = rPD P1 max(x1) (13)

For canonical configurations, TIA energy use scales with the maximum total input current
max(iPD) [40]. Since the TIAs in Figs. 5 and 6 support the same maximum current max(iPD),
they use the same energy.

The K-bit ADC in Fig. 6 preserves the modulator 2 output SNR, as per the multiplier SNR
analysis in Section 3.1. Therefore, the ADCs in Figs. 5 and 6 use the same energy.

3.3. Summary

Transmitters in Figs. 5 and 6 have the same input SNR, operate at the same modulation rate and
optical power, and their modulators use the same energy, resulting in same energy use.

ETX−EtAComp−Mult = ETX−OtAComp−Mult (14)

Receivers in Figs. 5 and 6 have the same output SNR, operate at the same data sampling rate,
and their ADCs and TIAs use the same energy, resulting in same energy use.

ERX−EtAComp−Mult = ERX−OtAComp−Mult (15)

Therefore, optical and electrical Input Data paths computing vector scalar product employing
multiplication operation use the same total energy.

ETotal−OtAComp−Mult = ETX−OtAComp−Mult + ERX−OtAComp−Mult (16)

ETotal−EtAComp−Mult = ETX−EtAComp−Mult + ERX−EtAComp−Mult

= ETotal−OtAComp−Mult
(17)

4. Addition

M elements of vector x[m] are shown electrically and optically added together in Figs. 7 and 8,
respectively, resulting in scalar z1.

z1 =
∑︂M

m=1
x[m] (18)

Input K-bit data is read in-parallel from Data Storage, added to compute output data, and
written to Data Storage. WDM implementation constraints limit the number of elements M.
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Fig. 7. Input Data path model with electrical addition of z1 =
∑︁M

m=1 x[m].

4.1. Electrical

Figure 7 expands the Fig. 3 Input Data path, except shows addition computation instead
multiplication computation. It shows M transmitters converting electrical digital data to M
optical signals by multiplying continuous wave optical power of each of the M wavelengths by
electrical signal representations of the data. Transmitter aM and other optical path losses are not
included. Also not included is optional WDM MUX and DEMUX (demultiplexer), each with aW
path loss, combining and separating the M wavelengths into and from one fiber, if a single fiber
link is desired.

Figure 7 shows M receivers, each comprised of one PD, TIA and ADC. Each PD converts
optical signal power to signal current iPD. Each TIA and ADC convert the signal current to
electrical digital data. TIA output is adjusted to map into the full ADC preamplifier input range.
Performance of high-speed CMOS TIAs and ADCs is listed in Tables 2 and 3, respectively.

The electrical adder with M K-bit inputs has a (K + log2M)-bit output sum. An implementation
of the M-input adder in Fig. 7 is a summing tree using M-1 two-input adders, or approximately
one two-input adder per ADC. The simplest implementation reuses latches of each two-input
adder resulting in log2M pipeline stages. A synthesis tool optimizing the M-input adder design,
using adder precision, clock rate, and process parameters as constraint variables, generates fewer
pipeline stages. Pipeline delay is not important in this application.

Because the signal sums coherently, while the noise sums in power, the adder output SNR
(SNRout−adder) increases 10dB per M decade.

SNRout−adder = SNRin−adder + 10log10M (19)
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Fig. 8. Input Data path model with optical addition of z1 =
∑︁M

m=1 x[m].

Performance of electrical 16-bit adders in 45, 28 and 7nm CMOS process nodes is listed in
Table 5. The 7nm values are estimated from 45nm and 28nm values using 10x and 5x energy
scaling factors [37], respectively. Energy use of 8-bit adders is ideally half of these values.
Energy use is much less than of the TIAs and ADCs listed in Tables 2 and 3, respectively, and is
negligible in calculating total energy use of the Input Data path. This is same as in electrical
computing where electrical data transfer dominates energy use [8].

ERX−EtAComp−Add ≈ ERX−EtAComp−Add + EComp−EtAComp−Add (20)

Table 5. CMOS 16-bit adder delay and energy use.

CMOS node nm Delay (ps) ps Energy/op (max) fJ Input bits/op Rate Gops/s Energy fJ/bit Reference

45 1000 496 16 1 31 [38]

45 → 7 40 50 16 25 3 [37,38]

28 448 197 16 2.2 12.5 [41]

28 → 7 30 40 16 33 2.5 [37,41]

4.2. Optical

Figure 8 expands the Fig. 4 Input Data path. It shows M transmitters converting electrical digital
data to M optical signal powers by multiplying continuous wave optical power of each of the M
wavelengths by electrical signal representations of the data. A WDM MUX passively combines
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the M wavelengths into one fiber. Transmitter aM, MUX aW and other optical path losses are not
included. For K=1, 0 and 1 binary levels are used, which implements digital optical addition.

ETX−OtAComp−Add ≈ ETX−OtAComp−Add + EComp−OtAComp−Add (21)

Figure 8 shows a single receiver, comprised of one PD, TIA and ADC. The PD sums the
electric field of the M wavelengths and converts the sum to signal current iPD. The TIA and ADC
convert the signal current to electrical digital data. TIA output is adjusted to map into the full
ADC preamplifier input range. Practical lower limit on the TIA feedback resistor value R/M
places a limit on the number of elements M.

Single TIA in Fig. 8 supports the same total photocurrent as M TIAs in Fig. 7. Ideally, TIA
noise is proportional to the thermal noise of the feedback resistor, which means it scales with the
square root of the resistor value. Therefore, the single TIA output SNR (SNRout_TIA) in Fig. 8 is
equal to M times TIA output SNR in Fig. 7.

SNRout−TIA−Fig.8 = M SNRout−TIA−Fig.7 (22)

The adder output SNR in Fig. 7 is increased by M over the single TIA output SNR (adder
input) because the signal sums coherently, while the TIA noise sums in power. Therefore, output
SNR due to M TIAs in Fig. 7 is equal to output SNR due to the single TIA in Fig. 8.

Figure 8 shows that the signal current iPD of the single TIA is equal to PD responsivity times
the sum of the M wavelength powers. Figure 7 shows that the sum of signal currents of the M
TIAs is PD responsivity times the sum of the M wavelength powers, i.e. the same. For canonical
configurations, TIA energy use scales with the maximum total input current [40]. Therefore, the
M TIAs in Fig. 7 use the same total energy as the single TIA in Fig. 8. TIA implementation
constraints, for example by the gain-bandwidth product on the TIA feedback resistor value, place
a limit on the number of elements M.

The output SNR of the (K + log2M)-bit ADC (SNRADCout−K+log2M−bit ) increases 6dB with
each bit of resolution increase.

SNRADCout−K+log2M−bit = SNRADCout−K−bit + 20log10M dB (23)

One bit of resolution increase requires 4x lower ADC noise, which with fixed supplies
requires 4x increase of the ADC signal capacitor(s) C. This requires gm (transistor small signal
trans-conductance) to increase by 4x to maintain constant gm/C, which increases ADC energy
use by 4x [42]. In general, to increase ADC effective resolution by M bits, or equivalently to
increase ADC SNR by 20log10M dB, requires M2 times the energy.

To increase ADC effective resolution by
√

M bits, or equivalently to increase the ADC SNR by
10log10M dB, requires M times the energy. This is the same increase in SNR as from summing
the output of M ADCs in Fig. 7, whose total energy use is M times that of a single K-bit resolution
ADC. Therefore, when operating at the same output SNR, the M ADCs in Fig. 7 use the same
total energy as the single (K + log2M)-bit ADC in Fig. 8.

For non-return to zero (NRZ) modulation, each of the receivers in Fig. 7 does not require
a full ADC, only a limiting amplifier (LA). The receiver in Fig. 8 still needs a linear TIA and
(1 + log2M)-bit ADC. For simplicity, energy use of a LA is assumed approximately equal to that
of a full 1-bit ADC. Therefore, M NRZ receivers in Fig. 7 use the same energy as a single NRZ
receiver in Fig. 8.

4.3. Summary

Transmitters in Figs. 7 and 8 have the same input SNR, operate at the same modulation rate and
optical power, and their modulators use the same energy, resulting in same energy use.

ETX−EtAComp−Add = ETX−OtAComp−Add (24)
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Receivers in Figs. 7 and 8 have the same output SNR, operate at the same data sampling rate,
and their ADCs and TIAs use the same energy, resulting in same energy use.

ERX−EtAComp−Add = ERX−OtAComp−Add (25)

Therefore, optical and electrical Input Data paths computing vector element sum employing
addition operation use the same total energy.

ETotal−OtAComp−Add = ETX−OtAComp−Add + ERX−OtAComp−Add (26)

ETotal−EtAComp−Add = ETX−EtAComp−Add + ERX−EtAComp−Add

= ETotal−OtAComp−Add
(27)

In other words, a single M-input electrical adder negligibly contributes to its associated optical
data transfer energy use, just as a single M-input optical adder negligibly contributes to its
associated optical data transfer energy use.

4.4. Optical implementation considerations

A significant design challenge of the optical path in Fig. 8 is matching the optical power of
all the wavelengths to be within the precision of the data. The power values must be within
one least significant bit (LSB) of the desired K-bit precision. This is very difficult and requires
complex calibration. For example, in volume optics manufacturing, to achieve reasonable yield
of datacom WDM transmitters, all the wavelength optical powers are within 3dB of each other;
i.e. the ratio of the highest to lowest optical power is 2 or less, which translates to best case 1-bit
of uncalibrated precision. In very high-volume manufacturing matching is 4.5dB, which is less
than 1-bit of uncalibrated precision.

A significant design challenge of the receiver in Fig. 8 is that the resolution of the ADC is
log2M bits greater than of the ADC in Fig. 7. The difficulty of implementing increased ADC
precision, places a significant limit on the overall optical computing precision.

There are other approaches to implementing optical addition. If signals are coherent and have
the same polarization state, their electric fields will sum or subtract when combined.

Another implementation of binary addition is used in a 4-bit optical arithmetic logic unit
(ALU) [21]. The ALU core is ∼2mm by 2mm; about half the reported chip area. A 7nm CMOS
8-bit electrical ALU is under 2um by 2um. That’s an area ratio of over 1 million, which shows the
challenge of competing with fine geometry CMOS. The power consumption of the 4-bit optical
ALU scaled to 7nm and operating at 4GHz is reported as ∼0.5mW. This is an optimistic result
because functions like clock distribution, which is typically half the energy use of a computing
system, and laser source are not included. The complete power consumption of a 90nm CMOS
64-bit ALU electrical computing core is reported as 300mW when operating at 4GHz [43].
Scaling 90nm to 7nm reduces power by 30x [37], which results in 10mW. A 4-bit ALU is ∼16x
lower than a 64-bit ALU, which results in ∼0.6mW 4-bit electrical ALU power. This is close
to the ∼0.5mW 4-bit optical ALU power. Both results do not include memory access, which
dominates energy use in complete computing systems [8]. The 4-bit optical ALU reference shows
another problem with many optical computing proposals which is focus on the non-dominant
energy use elements.

As discussed in Section 2.3, low precision optical computing partial implementations are
often compared to high precision electrical computing complete implementations like ones using
GPUs and TPUs. A nanophotonic accelerator using micro-disk-based adders and shifters is
reported as achieving 10x to 100x improvement in energy use over conventional GPUs and TPUs
[22]. Also reported is 42.4mW power consumption for the central computing-block made up of
sixteen 16-bit optical adders operating at 12.8GHz, which is 13pJ/bit. Yet this is ∼5x higher
energy use than the 7nm CMOS 16-bit electrical adders listed in Table 5.
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The above nanophotonic accelerator enhanced with photonic local storage registers reports
20x to 600x improvement in energy use over GPUs and TPUs [23]. Also reported is 1060mW
power consumption for the central computing-block made up of twenty-five 16-bit optical adders
operating at 50GHz, which is 53pJ/bit. Yet this is ∼20x higher energy use than the 7nm CMOS
16-bit electrical adders listed in Table 5. Both nanophotonic accelerator implementations show
that computing-block energy use is minor.

5. Inner product

NxM-element matrix Y[n, m] is shown electrically and optically multiplied by M-element vector
x[m] in Figs. 9 and 10, respectively, resulting in N-element vector z[n].

z[n] = Y[n, m] x[m] (28)

Figure 9 is a combination of Figs. 5 and 7. Figure 10 is a combination of Figs. 6 and 8. Input
K-bit wide data is read in-parallel/sequentially from Data Storage, matrix vector multiplied to
compute output data, and written sequentially to Data Storage. WDM implementation constraints
place a limit on the number of elements M.

Fig. 9. Input Data path model with electrical inner product of z[n] = Y[n, m] x[m].
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Fig. 10. Input Data path model with optical inner product of z[n] = Y[n, m] x[m].

5.1. Electrical

Figure 9 shows M one modulator transmitters converting electrical digital data to M optical signal
powers by multiplying continuous wave optical power of each of the M wavelengths by electrical
signal representations of the data. Transmitter aM and other optical path losses are not included.
Also not included is optional WDM MUX and DEMUX, each with aW path loss, combining and
separating the M wavelengths into and from one fiber, if a single fiber link is desired.

Figure 9 shows M receivers, each comprised of one PD, TIA and ADC. Each PD converts
optical signal power to signal current iPD. Each TIA and ADC convert the signal current to
electrical data. TIA output is adjusted to fully map into the ADC preamplifier input range.
Performance of high-speed CMOS TIAs and ADCs is listed in Tables 2 and 3, respectively.

Performance of electrical multiplier-adders in 14 and 7nm CMOS process nodes is listed
in Table 6. The first set of 7nm values are derived from the power consumption sum of the
16-bit multiplier and adder [37,38] listed in Tables 4 and 5, respectively. The second set of 7nm
values are estimated from the 8-bit multiplier-adder 14nm values using 1.4x energy scaling factor
[37]. Energy use is consistent with that of many commercial high-speed digital equalizers. It is
much less than of the TIAs and ADCs listed in Tables 2 and 3, respectively, and is negligible in
calculating total energy use of the Input Data path.

ERX−EtAComp−InnerP ≈ ERX−EtAComp−InnerP + EComp−EtAComp−InnerP (29)

An implementation of the M-input adder in Fig. 9 is a summing tree using M-1 two-input
adders, or approximately one two-input adder per multiplier. The simplest implementation reuses
latches of each two-input adder resulting in log2M pipeline stages.
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Table 6. CMOS 8-bit and 16-bit multiplier-adder delay and energy use.

CMOS node nm Delay (ps) ps Energy/op (max) fJ Input bits/op Rate Gops/s Energy fJ/bit Reference

45 → 7 58 367 16 17.5 23 [37,38]

14 18 222 8 56 28 [44]

14 → 7 11 159 8 90 20 [37,44]

5.2. Optical

Figure 10 shows M two modulator transmitters converting electrical digital data to M optical
signals by multiplying continuous wave optical power of each of the M wavelengths by electrical
signal representations of the data. A WDM MUX passively combines the M wavelengths into
one fiber. Transmitter aM

2, MUX aW and other optical path losses are not included. For K=1, 0
and 1 binary levels are used, which implements digital optical inner product.

Optical path losses require compensation with optical or electrical amplification, which may
significantly increase energy use. If a single fiber link is used for the Fig. 9 data path, the total loss
through its optical components is aM aW

2. This is approximately equal to aM
2 aW, the total loss

through the optical components in Fig. 10. Therefore, not including energy use of amplification
required to compensate for optical path losses, does not affect relative energy use comparison of
Figs. 9 and 10 Input Data paths.

Figure 2 shows the data sequencing. Modulator 2 operates at a much lower rate than modulator
1, and its energy use is negligible in comparison.

ETX−OtAComp−InnerP ≈ ETX−OtAComp−InnerP + EComp−OtAComp−InnerP (30)

Figure 10 shows a single receiver, comprised of one PD, TIA and ADC. The PD sums the
electric field of the M wavelengths and converts the sum to signal current iPD. The TIA and ADC
convert the signal current to electrical digital data. TIA output is adjusted to fully map into the
ADC preamplifier input range. Practical lower limit on the TIA feedback resistor value R/M
places a limit on the number of elements M.

5.3. Summary

Transmitters in Figs. 9 and 10 have the same input SNR, operate at the same modulation rate and
optical power, and their modulators use the same energy, resulting in same energy use.

ETX−EtAComp−InnerP = ETX−OtAComp−InnerP (31)

Receivers in Figs. 9 and 10 have the same output SNR, operate at the same data sampling rate,
and their ADCs and TIAs use the same energy, resulting in same energy use.

ERX−EtAComp−InnerP = ERX−OtAComp−InnerP (32)

Therefore, optical and electrical Input Data paths computing matrix vector product employing
inner product operation use the same total energy.

ETotal−OtAComp−InnerP = ETX−OtAComp−InnerP + ERX−OtAComp−InnerP (33)

ETotal−EtAComp−InnerP = ETX−EtAComp−InnerP + ERX−EtAComp−InnerP

= ETotal−OtAComp−InnerP
(34)

Fully parallel computing can be implemented by replicating N times all the blocks in Figs. 9
and 10. Since the same total operations are performed by the same blocks, serial and parallel
computing energy use is the same.
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6. Conclusion

This paper shows that optical Transmitters in the Input Data paths with electrical and optical type
A Computing, like in Figs. 3 and 4, respectively, use the same energy. Further, the energy use by
optical type A Computing, like in Fig. 4, is shown to be negligible compared to energy use by the
optical Transmitter preceding it. Similar results are used to support many optical computing
proposals.

This paper also shows that optical Receivers in the Input Data paths with electrical and optical
type A Computing, like in Figs. 3 and 4, respectively, use the same energy. Further, energy use
by electrical type A Computing, like in Fig. 3, is shown to be negligible compared to energy
use by the optical Receiver preceding it. Such results are missing in many optical computing
proposals, and lead to incorrect energy use conclusions.

Energy use by math intensive programmable computing tasks, like matrix vector product,
is dominated by data transfer, for either optical or electrical computing. By itself, the optical
and electrical computing energy use is negligible compared to optical transmitter and receiver
energy use, respectively, and does not affect energy use totals. For math intensive programmable
operations like in machine learning applications, switching to optical from electrical computing
does not lower energy use. This is in stark contrast to significant energy use reduction by
switching to optical from electrical data transfer.

In this paper, the comparison of optical and electrical computing energy use is apples-to-apples,
which constrains the optical data transfer to be the same. However, optical computing restricts
modulation and coding choices, which prevents minimizing energy use through link parameter
optimization. Electrical computing does not impose such restrictions and can have fully optimized
optical link parameters, which results in significantly lower data transfer energy use than for
optical computing. This is basic communication theory, which is not rederived in this paper.
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