Before 400G for Hyperscale Data Centers

Beyond 400G for Hyperscale Data Centers OFC 2019 Panel Th1A 7 March 2019 Chris Cole

40G and 100G Shipment Data

10G Shipment Data Milestones

- 1999: 10G Telecom start; OC192 300-pin
 - architecture: 622M ASIC I/O → 10G λ rate, 16:1 gearbox
 - BW intensive low-volume core/transport apps.
- 2002: 10GE Datacom start; 10GE LR, SR XENPAK, X2
 - architecture: 2.5G ASIC I/O → 10G λ rate, 4:1 gearbox
 - moderate ramp
- 2006: 10GE Datacom volume start; 10GE LR, SR SFP+
 - 480M switch ASIC: 48x radix
 - architecture: 10G ASIC I/O → 10G λ rate, no gearbox
 - steep ramp in datacenters
- 2007: 1st millionth 10GE port

40G Shipment Data Milestones

- 2004: 40G Telecom start; 40G VSR OC768 300-pin
 - architecture: 2.5G ASIC I/O → 40G λ rate, 16:1 gearbox
 - BW intensive low-volume core/transport apps.
- 2010: 40GE Datacom start; 40GE LR4, SR4 CFP
 - architecture: 10G ASIC I/O → 10G λ rate, no gearbox
 - moderate ramp
- 2011: 40GE Datacom volume start; 40GE LR4, SR4 QSFP+
 - 1.28G switch ASIC: 32x radix
 - architecture: 10G ASIC I/O → 10G λ rate, no gearbox
 - steep ramp in large datacenters
- 2014: 1st millionth 40GE port

100G Shipment Data Milestones

- 2010: 100G Telecom start; 100GE LR4 CPF
 - architecture: 10G ASIC I/O → 25G λ rate, 10:4 gearbox
 - BW intensive low-volume core/transport apps.
- 2014: 100G Datacom start: 100GE LR4 CFP2, CPAK
 - architecture 10G ASIC I/O → 25G I/O rate, 10:4 gearbox
 - moderate ramp
- 2015: 100G Datacom volume start; 100GE CWDM4, SR4, PSM4 QSFP28
 - 3.2T switch ASIC: 32x radix
 - architecture: 25G ASIC I/O → 25G λ rate, no gearbox
 - steep ramp in large datacenters
- 2017: 1st millionth 100GE port
- 2019: 100GE FR QSFP28, 4x100GE DR QSFP-DD
 - 12.8T switch ASIC: 128x radix

200G Shipment Extrapolation Milestones

- 2018: 200G Datacom start (see 2019)
- 2019: 200G Datacom volume start (2x200G FR4+ OSFP, 200GE FR4 QSFP56)
 - 12.8T switch ASIC: 64x radix
 - architecture: 50G ASIC I/O → 50G λ rate, no gearbox
 - steep ramp in large datacenters
- 2021: 1st millionth 200GE port
- 25.6T switch ASIC: 128x radix

400G Shipment Extrapolation Milestones

- 2019: 400G Telecom start; 400GE LR8 CFP8, 400GE LR8, FR4, LR4 OSFP, QSFP-DD
 - architecture: 50G ASIC I/O → 50G λ rate, no gearbox
 - architecture: 50G ASIC I/O → 100G λ rate, 2:1 gearbox
 - BW intensive low-volume core/transport apps.
- 2020: 400G Datacom start; 400GE FR4 OSFP, QSFP-DD
 - 12.8T switch ASIC: 32x radix
- 2021: 400G Datacom volume start; 2x400GE-FR4+ OSFP, 400GE-FR4+ QSFP112
 - 25.6T switch ASIC: 64x radix
 - architecture: 100G ASIC I/O → 100G λ rate, no gearbox
 - steep ramp into datacenters
- 2023: 1st millionth 400GE port

10G, 40G, 100G, 200G, 400G Ship Milestones

Gb/s	1	2	3	4	5	6	7	8	9	10	11
10	1999 TS			2002 DS				2006 DVS	2007 1 st M		
40	2004 TS						2010 DS	2011 DVS			2014 1 st M
100			2010 TS				2014 DS	2015 DVS		2017 1 st M	
200							2018 DS	2019 DVS		2021 1 st M	
400						2019 TS	2020 DS	2021 DVS		2023 1 st M	

TS: Telecom Start

DS: Datacom Start

DVS: Datacom Volume Start

1st M: 1st Millionth xGE port

FINISAR

200G, 400G Forecast

specified bit rate	Ethernet optical port	1 st millionth pluggable optical module with total specified bit rate
200Gb/s	2021 (early)	2021 (late)
400Gb/s	2023	2022 (early)

40GE & 100GE Standardization Background

- In July 2006 IEEE started studding follow-on rate to 10Gb/s
- 100Gb/s was the only serious contender
- In Jan. 2007 an intense 6 month debate started whether 40Gb/s is better for Datacenter

HSSG Speeds and Feeds

Reality Check

Shimon Muller, Andy Bechtolsheim, Ariel Hendel

Sun Microsystems, Inc.
January 2007

40GE, 100GE Standardization Background

- 100Gb/s pro arguments
 - 10x rate step minimizes deployment/operational cost by eliminating intermediate rate step
 - Investment focus on 25GB technology will lead to lower optics cost in the long-term
- 40Gb/s pro arguments
 - Mature 10GB technology ready for near-term, low-cost, low-risk, high-volume deployment
 - 1.28T switch ASIC radix:
 - 100G: 12x
 - 40G: 32x
- Both were adopted as IEEE 802.3 Ethernet rates

200GE, 400GE Standardization Background

- 400Gb/s pro arguments
 - 4x rate step minimizes deployment/operational cost by eliminating intermediate rate step
 - Investment focus on 100GB technology will lead to lower optics cost in the long-term
- 200Gb/s pro arguments
 - Mature 25GB technology ready for near-term, low-cost, low-risk, high-volume deployment
 - 12.8T switch ASIC radix:
 - 400G: 32x
 - 200G: 64x
 - 100G: 128x
- Both were adopted as IEEE 802.3 Ethernet rates

ECOC 2015 Cloud Datacenters Panel (C. Cole)

Ethernet Data Rates Standardized in IEEE

- Existing rate progression, Gb/s:
 - $1 \to 10 \to 40 \to 100$
- Resulting rate progression Gb/s:
 - $10 \rightarrow 25 \rightarrow 50 \ (\& 40) \rightarrow 100 \rightarrow 200 \rightarrow 400$
- Rates after 400 (crystal ball,) Gb/s:
 - 800

28 September 2015

1600

FINISAR

7 March 2019 Prediction

Beyond 400G for Hyperscale Data Centers: 800G → 1600G

14

26

Before 400G for Hyperscale Data Centers

Thank You

