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Abstract: The relation between two waves propagating in opposite directions – the so-called 
bidirectional or counter-propagation- through a common path in turbulent atmosphere has been the 
subject of numerous theoretical and experimental studies. In most commonly considered double-
pass and target-in-the-loop scenarios, a transmitted optical wave propagates through atmosphere 
toward a remote object (target) and then propagates back after being scattered off the object’s 
surface. The double-pass propagation results in several interesting effects including enhanced 
intensity and phase fluctuations of the backscattered (target-return) wave and enhanced correlation 
of power signals received at both ends of bidirectional point-to-point optical links. In this paper 
we discussed the integral relationships between the counter-propagating wave complex amplitudes 
known as overlapping integrals or interference metrics, which values are preserved along the 
propagation path. We show that the conservation property of these integral quantities of the 
counter-propagating waves can be utilized for atmospheric turbulence effects mitigation in 
directed energy, free-space laser communication and active imaging applications. 
 
OCIS codes: (010.1300) Atmospheric propagation  

 
1. Introduction: Conservation integrals for counter-propagating waves   

Consider the counter-propagating waves with complex amplitudes ( , , )A z tr   and ( , , )z tψ r , where 0 ≤ 𝑧 ≤ 𝐿 is a 
coordinate colinear to propagation direction (optical axis), r={x,y}  is coordinate vector in the plane orthogonal to 
the optical axis, L is propagation distance and t is time. For simplicity, we assume that both optical waves are 
monochromatic with identical wavelength 𝜆. In the quasi-optical approximation, propagation of these waves can be 
described by the following system of parabolic equations [1]: 
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where ∇⊥2= 𝜕2/𝜕𝑥 + 𝜕2/𝜕𝑦 is the Laplacian operator over the transversal coordinates, 1( , , )n z tr is a function 
describing the refractive index fluctuations, 𝑘 = 𝑘0𝑛0, 𝑘0 = 2𝜋/𝜆 is the wavenumber, and 𝑛0 is refractive index 
undisturbed value. We assumed here that refractive index inhomogeneities can be considered as frozen during 
optical wave propagation over distance L, that is  L < cτat, where c and τat are the speed of light and atmospheric 
characteristic time respectively.    

From the system of Eqns (1), (2) one can obtain the following conservation law, that links the counter-
propagating wave complex amplitudes and known as the interference metric or overlapping integral [2-5]  

2
int ( ) ( , , ) ( , , ) ( ),J t A z t z t d f tψ= =∫ r r r  (3) 

where f(t) is an independent on variable z function. Thus, at a fixed time t the integral (3) has the same value at both 
ends of the propagation path:  

2 2
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Note that  expression (4) is valid for arbitrary counter-propagating waves.  
Consider  the counter-propagating waves in the target-in-the-loop laser beam propagation scenario as in Fig. 1 and 
calculate the overlapping integral int ( )J t  at the transceiver (z=0), and target (z=L) planes. In this case the target-
return wave ( , )z Lψ =r  in Eqn (4) is defined by the laser beam scattering off the target surface. Represent the 
scattering condition in the form ( , ) ( ) ( , )z L T A z Lψ = = =r r r , where T(r) is target complex scattering coefficient. 
By substituting the scattering conditions into Eqn (4), we obtain 

2 2 2
int ( ) ( , 0, ) ( , 0, ) ( ) ( , , )J t A z t z t d T A z L t dψ= = = = =∫ ∫r r r r r r . (5) 

 Expression (5) couples the optical wave's characteristics at the  transceiver and target planes, and thus offers 
opportunity for quality evaluation of the target-plane laser beam power spatial distribution (quality of the target hit-
spot brightness) using measurements of  the interference metric at the transceiver plane. In this presentation we 
provide several examples illustrating how optimization of the interference metric can result in target hit-spot 
brightness increase and hence can be used for the outgoing beam control and adaptive optics (AO) atmospheric 
effects mitigation in laser beam projection applications.   

2.  Interference metric sensing with a single-mode fiber based optical receiver  

The interference metric int ( )J t  can be directly 
measured using interference of the outgoing and 
scattered waves that are registered at the transceiver 
plane z=0 [4].  This method of the interference metric 
measurements requires utilization of a laser source with 
long coherence length.  Another, practically more 
convenient method of interference metric sensing is 
discussed in [6]. It is  shown that for a laser beam 
projection system that utilizes transceiver telescope 
with a single-mode fiber input as shown in Fig. 1, the 
power signal P registered by the fiber-coupled photo-
detector  is proportional to 2

int| ( ) |J t , that is   
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Note that for the case of laser beam projection onto a planar mirror surface T(r)=T0=const, and hence   
2 2 2 2

int 0( ) | | | ( , , ) |P t J T A z L t dκ κ= = =∫ r r . We show that for relatively short propagation distances 0.3 ,difL L≤

where 2
0 / 2difL ka= , and a0 is the transmitted beam radius, optimization of the interference metric module 

potentially results in a hit-spot that  exceeds the diffraction-limited beam size by less than 5%. 

3.  Adaptive beam projection onto an extended target with rough surface 

 Consider AO wavefront control based on interference metric optimization for the case of an extended target with 
randomly rough surface in an optically inhomogeneous medium. The complex scattering coefficient T(r) can then be 
represented in the form ( ) ( )exp[ ( )]s

zT V ik ξ=r r r , where ξ(r) is a random target surface profile function and s
zk is the 

scattering vector component [7]. For simplicity we assumed that variations in the incident wave's wavefront slopes 
at the target surface can be neglected. The function ( ) ( ) exp[ ( )]V ikSγ=r r r  corresponds to the scattering coefficient 
in the absence of roughness, where S(r) and γ(r) are functions describing target shape and surface reflection 
characteristics.     Using the introduced expression for the complex scattering coefficient the interference metric can 
be represented in the form 
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Because of the presence of the random function ξ(r), the interference metric in Eqn (7) is a random variable.    This 
suggests that some processing of the interference signal should be performed to eliminate dependence of int ( )J t  on 
the surface roughness. For rapidly spinning targets or fast steering of the outgoing beam on the target surface the 
simplest processing of this type can include averaging the interference metric over an ensemble of surface roughness 
realizations [4]. 

 Consider interference metric (7) averaged over an ensemble of random surface profile function realizations:  

Fig. 1: Notional schematic of the target-in-the-loop  bidirectional 
wave propagation link based on single-mode fiber-collimator 
transceiver composed of a collimating lense  with fiber tip located 
in its focus and optical trains based on single-mode fibers for both 
transmitted and received waves. 
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In Eqn (8) averaging is performed over time τav << τat characterizing rapidly changing surface roughness 
realizations.  It can be shown [4,8] that for flat object with V(r)=V0 =const and Gaussian roughness  
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where sσ  is the standard deviation of the surface roughness. The factor 2
0 exp[ ( ) / 2]s

s zV kσ− in Eqn (9) defines the 
surface roughness characteristic attenuation coefficient. With an increase in the surface roughness sσ  the 
attenuation coefficient decreases. The averaged interference metric in Eqn (9) depends solely on the optical field 
distribution inside the target hit spot and, with accuracy up to a constant, coincides with the corresponding 
interference metric value for the case of laser beam projection onto the planar mirror surface. Thus, for an extended 
flat target, maximization of the averaged interference metric module  by shaping the outgoing wave phase results in 
an intensity distribution on the flat target surface that is identical to that for a flat mirror surface obtained with the 
corresponding interference metric optimization.  
Consider the laser beam projection system based on the single-mode fiber laser transceiver as in Fig. 1. In this 
system the measured target-return power signal P is proportional to the interference metric squared modulus.  In the 
case of an extended fast spinning target or laser beam scanning the averaged over an ensemble of surface roughness 
realizations power signal (K-metric) is given by  
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It can be shown [8] that for a statistically uniform and isotropic random roughness ξ(r)  the expression for  K metric 
can be simplified to 

2 2 2 2
int( ) | ( ) | | ( ) | ( , , )KK t P J t V I z L t dκ=< >=< >= =∫ r r r , (11) 

where 2( / 2)( )K skκ π θ= is a characteristic attenuation coefficient, and 2( , , ) | ( , , ) |I z L t A z L t= = =r r  is the intensity 
distribution on the target surface. Here /s s slθ σ=  and ls are correspondingly the characteristic angle for the surface 
roughness slopes and the surface roughness correlation length. For an extended flat surface with V(r)=V0=const  K 
metric in Eqn (11) is proportional to the well-known sharpness function J₂. Thus, maximization of the K-metric 
measured at the receiver aperture leads to maximization of the sharpness function at the target surface, and 
correspondingly results in an increase in the target hit-spot brightness. 
Besides the directed energy (beam projection) applications the conservation properties of the interference metric can 
be used for mitigation of turbulence-induced signal fading in laser communication and speckle modulation in active 
imaging systems [6].   
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